2X^2+2y^2+2Z^2=50

Simple and best practice solution for 2X^2+2y^2+2Z^2=50 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2X^2+2y^2+2Z^2=50 equation:



2X^2+2X^2+2^2=50
We move all terms to the left:
2X^2+2X^2+2^2-(50)=0
determiningTheFunctionDomain 2X^2+2X^2-50+2^2=0
We add all the numbers together, and all the variables
4X^2-46=0
a = 4; b = 0; c = -46;
Δ = b2-4ac
Δ = 02-4·4·(-46)
Δ = 736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{736}=\sqrt{16*46}=\sqrt{16}*\sqrt{46}=4\sqrt{46}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{46}}{2*4}=\frac{0-4\sqrt{46}}{8} =-\frac{4\sqrt{46}}{8} =-\frac{\sqrt{46}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{46}}{2*4}=\frac{0+4\sqrt{46}}{8} =\frac{4\sqrt{46}}{8} =\frac{\sqrt{46}}{2} $

See similar equations:

| y+14=4y-18 | | 3x+27+60=90 | | (22-x)+22=180 | | 86-w=281 | | 8x-16+5×+37=17×-4 | | 7b−18b−–2=13 | | 4n+110=180 | | 4k/3=12 | | 60y=50-0,667y | | C=39.69+50x | | (12x)+36=180 | | 2+x/3=1-2x | | 51/q=17 | | 63+20+x=90 | | 28=2f | | 3-(4x-6)/(6-4x)=2x-3 | | 7u=5 | | 2(v+5)=14 v+5= | | 13x-12=5x+60 | | 4=v-31 | | X5-3=13+z | | –4k=–10k−6 | | 4=w-31 | | 16e=144 | | 5+v/12=4 | | -1+x/12=0 | | 5z–3=13+z | | 3r-3r+3r=r-1 | | 7=8h+8 | | 4(2+v)=3;v=5 | | 3x14=5 | | Y=66-3x |

Equations solver categories